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Millimeter-Wave Power-Fading Compensation for
WDM Fiber-Radio Transmission Using
a Wavelength-Self-Tunable
Single-Sideband Filter

Eric Vourc’h, Bernard Della, Denis Le Berre, and Didier Hervé

Abstract—Optical single-sideband (OSSB) sources compensateBS, the sidebands are phase shifted. Since the BS's PD is a
for deleterious chromatic dispersion effects in fiber-radio systems. quadratic detector, the recovered power leiig} is a function

We utiIi_ze the photorefractive pr_operties of iron-qlop_ed indi_um of the phase shift [see (1)]. ThuBgr suffers from periodical
phosphide (InP:Fe) to allow microwave—photonic interactions

and design wavelength-independent OSSB filtering. Therefore, fading depending on the fiber lengthand on the square of the

a wavelength-self-tunable single-sideband filter is built and Modulation frequency,, [see (2)] [4]
characterized up to the millimeter-wave (31.5 GHz) domain.

Compensation for fiber-dispersion penalties is achieved, showing d = 7rLD)\2f,2n (1)
photodetected power fluctuation along the fiber as low as 1 dB. c

In addition, we demonstrate the wavelength-division-multiplexing 7LD)2 2

fiber-radio transmission of two OSSB channels transporting Prr x cos® <7m> ) 2)
140-Mbit/s binary phase-shift keying data at a 16 GHz RF over a c

14-kmfi I h foll - io link. . . . . .
m fiber length followed by a 3-m radio fin In the above equations,is the velocity of light,)\ is the op-

Index Terms—Bragg grating, chromatic dispersion, hybrid tical carrier wavelength, anf) is the fiber-dispersion param-

fiber radio (HFR), iron-doped indium phosphide, optical ; ; PR ;
double-sideband signal (ODSB), optical single-sideband signal eter. Moreover, problems associated with chromatic dispersion

(OSSB), photorefractive effect, wavelength division multiplexing 2'€ aggravated since the distance where the first fading occurs
(WDM). varies with the optical modulator’s chirp parameter.

The power fading drawback is eliminated when a single-side-
band (SSB) signal is used as reported in recent research
focusing on fiber-wireless issues [5], [6]. Optical single-side-

YBRID fiber-radio (HFR) architectures are an attractividand (OSSB) generation has previously been achieved using

solution for broad-band access since they allow quick atite double modulation of a dual-electrode Mach-Zehnder
cost-effective network deployment [1], [2]. In HFR systems, anodulator (MZM) [7] biased at quadrature or using a source
central office (CO) transmits optical carriers modulated at RiRtegrating two electro-absorption modulators (EAM) [8].
The transmitted signals then propagate over fiber links towafdhother effective solution relies on the suppression of one
remote base stations (BSs). At these locations, a photodimighe sidebands of a DSB signal by means of a fixed Bragg
(PD) converts the optical signal into an electrical RF signadrating [9]. In the same manner, configurations implementing
which is then amplified and transmitted by an antenna. Finallg,mechanically tuned Bragg grating [10] or a tapered linearly
the broad-band services are delivered to the customer by a raghigped fiber grating [11] have also led to power-fading com-
link. Moreover, by also incorporating wavelength division mulpensation. However, despite their simplicity, the latter filtering
tiplexing (WDM) techniques into the fiber access network, ea¢achniques have the disadvantage of being dependent on the
BS can be addressed by a different wavelength. Such signalvelength of the optical carrier. In our approach, we utilize
routing allows the number of services delivered to be increasi@ photorefractive effect in an iron-doped indium phosphide
and enables progressive deployment of the network [3]. (InP: Fe) crystal to generate an OSSB signal. The principle

Nevertheless, the standard amplitude modulation of opticfl the device is to take a part of an optical double-sideband
carriers generates double-sideband (DSB) signals. Thus, dué@®SB) signal to generate three dynamic Bragg gratings inside
the chromatic dispersion effects, each optical line propagatbs bulk crystal via the photorefractive effect [12]. Simulta-
in the fiber at a different speed. Consequently, on arrival at theously, the second part of the ODSB signal is injected into

the gratings under the appropriate Bragg angle whose value
. . . , is dictated by the modulation frequengy,. In this way, two
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In Section Il of this paper, we report on the principle of the InP:Fe Mirror
wavelength-self-tunable single-sideband (WST-SSB) filter, and 3 Bragg
we describe the experimental setup of the device. Section Ill re- gratings
ports the millimeter-wave characterization of a WST-SSB filter: Gizs

first, output spectra corresponding to 31.5-GHz modulated input
signals are measured and discussed. Second, we present a chro-
matic dispersion compensation experiment again performed at
31.5 GHz, showing less than 1-dB detected RF power fluctua-
tion. In Section IV, a WDM fiber-radio system experiment im- g |
plementing a WST-SSB filter is demonstrated. The system RF  jnput ’x ’7/}; y
was 16 GHz and was binary phase-shift keyed with a 140-Mbit/s e
data stream. Two optical SSB signals were transmitted over a /Q o ) A
14-km fiber length before one channel was photodetected and ) cﬁiﬁﬁ 2
subsequently radio-transmitted over a 3-m distance. Finally, the input
eye pattern of the down-converted received signal was observed.

Fig. 1. WST-SSB filter concept.

55

Il. WST-SSB RLTER CONCEPT AND EXPERIMENTAL SETUP
A. WST-SSB Concept Mirror  InP:Fe crystal

A photorefractive material is an electrooptic crystal in whick
light illumination generates free carriers. InP: Fe belongs t
this category and is particularly interesting since it reacts t
the 1.55am wavelengths used for optical-fiber telecommu-
nications [14]. Therefore, a control beam in this wavelengt ; ‘
range can be used to generate a Bragg grating inside an InP : 30 mm %f_/
crystal. In fact, thanks to a simple interference pattern, th - Collimators
photorefractive effect leads to a periodic variation of the
refractive index. First, the counter propagative illumination ¢fi9- 2. WST-SSB filter built with a 30-mm-long InP: Fe bulk crystal.
an InP : Fe bulk crystal is obtained thanks to the control beam’s
reflection off a mirror placed behind the crystal. Thus, theetween a control wavelength and a signal wavelength_,
interference pattern obtained results in a periodic illuminatidmz andG; will diffract the signal lines\; andA., respectively.
inside the crystal. The carrier generation and trapping théhus, these diffracted carrier and lower sideband constitute an
produce a periodic charge distribution. Finally, the electrooptf¢SSB signal that is collected at the device output.
effect combined with the periodic electrical field due to the Inaddition,¢ being fixed, the filter works for a given modula-
charge distribution generate a periodic refractive index. THi®N frequencyf., according to (5). The measured bandwidth of
Bragg grating makes it possible to diffract a signal beam #he device is in the order of 2 GHz [15], which allows 1-Gbit/s
wavelength),. According to the Bragg condition, the valuebit rates to be considered. This 3-dB bandwidBW(; p) is
of ), is linked to the grating period, which, in our case, linked to the bulk crystal’s length by (6). Moreover, since the
depends on the control beam wavelengttisee (3)]. Equation input DSB signal drives the filter, the latter is WST. This prop-
(4) gives the relation betweex, and .. It is to be noted that erty is the main advantage of this technique with respect to in-
\. is greater than\, tegrated SSB modulation sources or other filtering techniques

using fixed Bragg gratings

A=Z5 3) .2
o fmgcsnzl 0 )
N E 2n2 .
sin
As = A 1—< ) : 4) BWyap & 6
. sap 2 57 ©®)

In (3) and (4)n is the crystal average refractive index ahd ) i
is the angle separating the signal beam from the control be8m WST-SSB Device Experimental Setup
outside the crystal. Obviously, the value we &edt fixes the Fig. 2 shows the way the WST-SSB filter was implemented
wavelength difference\\ between), and A.. Consequently, for the subsequent experiments. The InP: Fe crystal used was
regarding an optical DSB signal,can be set so thakA co- 30-mm long with a mirror glued behind it in order to permit the
incides with the wavelength difference between the carrier andntrol beam interference. The input and output accesses used
sidebands. Therefore, in this configuration (Fig. 1), we divideollimators whose angles were placed by means of microposi-
the DSB signal into two beams. The first one is used as the cdioning systems. The angles were changed whenever the exper-
trol beam and the second one as the signal beam. In this wiayent needed a change in the device operating frequency.
the three control lines)(, 2 3) generate three Bragg gratings Moreover, the InP:Fe physical parameters confer on the
(G1,2,3). Then, according to the relation [see (4)] that existdter a few milliseconds response time, as well as a theoretical
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Fig. 3. Experimental setup for measuring the single-channel 31.5-GHz
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[16]. The latter reflectivity will be examined in greater detail S
in Section Ill. B 66
o
-75 410 :
“| C HARACTERIZATION 1553,62 1554,02 1554,42 1554,82 1555,22 1555,62
A. WST-SSB Filter Output Spectra Measurements Wavelength (nm)
In order to characterize the WST-SSB filter described in Sec- (b)

tion 11, spectral response measurements were conducted in bagh4. Measured optical spectra in the 31.5-GHz single-channel WST-SSB
the microwave and millimeter-wave frequency domains. Morélter characterization experiment. (a) Spectrum at the WST-SSB filter input.
A ) . ; ﬁt@ Spectrum at the WST-SSB filter output.

over, two experimental configurations were set up. First, t

filter’s output spectrum corresponding to one DSB signal at the
input was observed. Second, the output signal was measured, 1552.7 nm
while two DSB WDM channels were injected at the input. Re-
sults reported here were obtained for optical signals modulated LD V

at a 31.5-GHz RF. > ﬂ &
In the single-channel experimental setup (Fig. 3), the optical LD v

carrier emitted by a 1.55m LD was injected into a multi- @/ Mihahs Ak

quantum-well EAM, driven at 31.5 GHz with 9.5-dBm RF 1553.5 nm

power applied. At this stage, an erbium-doped fiber amplifier o) A h Optical
spectrum

(EDFA) was used in order to compensate for the 15.8-dB

insertion loss in the modulator and provide a sufficient pump WST-SSB filter N A% Miho | analyzer
level for the gratings. The resulting DSB signal was fed setat 31.5 GHz
through a polarization controller into a 3-dB optical couplefig. 5. Experimental setup for measuring the 31.5-GHz two-channel
connected to the WST-SSB filters’ inputs. Of course, th&ST-SSB filter output spectrum.

device’s collimator angles were adjusted beforehand so that

the operating frequency was 31.5 GHz. Finally, the diffracted Regarding the two WDM channel spectral response measure-
signal was observed with an optical spectrum analyzer (OSA)ents (Fig. 5), two optical carriers were injected into the EAM.
The DSB input signal, which had a 8-dBm carrier level and Bhe RF driving of the modulator was again a 9.5-dBm signal at
—3.5-dBm sideband level, is shown in Fig. 4(a). On the othéne 31.5-GHz frequency and the rest of the setup was also sim-
hand, Fig. 4(b) shows the diffracted signal, which, as predictédr to the single-channel case. Nevertheless, in this new config-
in Section I, was SSB with an upper sideband rejection upation, six dynamic Bragg gratings were assumed to be gen-
to 39 dB. Nevertheless, it is to be noted that the diffracteztated inside the InP:Fe crystal. As a consequence, in order
lower sideband X;) level is higher than the diffracted carrierto prevent misdiffraction of the first channel’s upper sideband
(A2) level. This was predictable since gratiag is of higher by the grating due to the second channel’s lower sideband, the
amplitude than grating's, as they are generated by the opticalavelengths of the carriers were spaced 0.8 nm apart. Fig. 6(a)
carrier and upper sideband, respectively. In addition, tled (b) shows the optical spectrum before the input coupler of
experiment implemented different laser diodes (LDs). In ththe WST-SSB filter and the diffracted spectrum, respectively.
way, we could verify that the SSB diffracted signal followed &wo SSB channels are obtained with a 30-dB upper sideband
carrier-wavelength change. rejection.

I
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Obviously, the low fiber-to-fiber efficiency is the character-
istic to be improved in our experimentation. Indeed, in the oncg
channel case, the measured power level difference between £
input and output lower sidebands is 28 dB. Nevertheless, the 8 15
of an efficient EAM with greater modulation depth (0.3 insteaw
of the current lower than 0.1 value) would increase the inpi
sideband levels and would consequently also increase the ¢
fracted sideband level. Furthermore, in the two-WDM-chann
case, the fiber-to-fiber efficiency decreases by 8 dB. This results
from the fact that when a second channel is added, the Br
grating modulation indexes are divided by two.

12 1 m DSB 31.5 GHz

—+-SSB 31.5 GHz

4 8 12 16 20 2
Propagation distance (km)
(b)

qg& 8. Recovered electrical power levels as a function of fiber length for:
(a) 16- and (b) 31.5-GHz modulated optical DSB signals and for SSB signals

. . . . obtained using a WST-SSB filter.
In comparison, cadmium telluride (CdTe) is another mate- 9

rial thatis also photorefractive in the 1.5%8n-wavelength range . : . .
[17]. Theory predicts that the use of such a crystal could at Iegét[fraCted level. Nevertheless, this dependency is not an issue

e g i) . since the WST-SSB filter is a transmitter device.
doub_le_ the reflectlv_lty thanks tol'cls 5.5 p”V electrooptic In addition, we estimated that a 0:06ffset of the collima-
coefficient [18] against 1.7 pmV ~—* for InP : Fe.

) ) tors’ angles induced a central frequency shift of the filter in the
Nevertheless, from our point-of-view, InP : Fe seems a mOgder of 1 GHz. This value was evaluated by comparison be-
promising choice since it allows InGaAsP integration of the d@yeen angles set for a 16- and 31.5-GHz filter operating fre-

vice to be considered. Indeed, such an alternative could redggRncy and it is in good agreement with theoretical predictions
the 4.5-dB loss due to the collimators. On the other hand, thge (5)].

filter's throughput could be increased by also integrating an op-
tical semiconductor amplifier at the output of the device. B. Power-Fading Compensation Experiments

Furthermore, as far as polarization is concerned, weAfter preliminary spectral response observation, charac-
observed that a polarization controller could optimize therization was completed by measuring the detected power
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Fig. 9. Experimental setup of the system transmitting 140-Mbit/s data streams at 16-GHz RF, incorporating the WST-SSB filter. The demultiptexiiog an
transmission of one channel follow the transmission of two WDM channels over a 14-km fiber link.

variations along the fiber using either ODSB or OSSB signals
For this purpose, the experiment depicted in Fig. 7 was imﬁ
plemented. An optical modulator, driven by an RF electrica\g
signal, externally modulated an optical carrier emitted by arz : n.
LD. The resulting DSB signal was amplified by an EDFA & : : 5/\;
and injected into the WST-SSB filter inputs by means of a S A A A B 0 R
3-dB optical coupler. At the output, the OSSB signal was a|S(‘?‘3 27 5 } I \
boosted by an EDFA and transmitted into fibers whose lengthg / \/ \
varied up to 24 km. The first EDFA was necessary becaus© ] TR
of the insertion loss in the modulator, whereas the second or ~ ,, [ i P P ;
compensated for the filter low reflectivity and the loss in the 15514 1551,8 1562,2 1552,6 1553
fibers. In addition, a 80%/20% coupler was implemented at th:
fiber output. The 80% path was connected to the high-spee Wavelength (nm)
PD, while the 20% one was directed to an OSA so as to make . )
. . L . ig. 10. Amplified WST-SSB output signal measured for a two-channel
sure a constant optical signal power level was injected into tg input DSB signal with 16-GHz RF.
PD. The recovered RF electrical signal was then measured at
the electrical spectrum analyzer. First, the RF was Chosenat\gjailableled usto choose a 16-GHz carrier frequency. The trans-
be 16 GHz and an MZM was used. The latter device was then_ " . :
. .Mmitter implemented two tunable lasers whose emitted carriers
replaced by an EAM driven at a 31.5-GHz RF. Moreover, in . .
. . ere setat 1551.9 and 1552.5 nm, respectively. Each carrier was
each case, the WST-SSB filter operating frequency was setls . S
directed to one path of an optical coupler through a polarization

the desired RF thanks to appropriate adjustment of the m]ecuoc';]ntroller and the coupler output was fed to an MZM. A 16-GHz

angle. Measurement results are plotted in Fig. 8, the dashed B carrier, binary phase-shift keyed by a 140-Mbit/s data stream

Bt e 20 Sl roapere Nttt for Soat sandJTP S7B44).Was used o e the MZW (RF lecrode). Agai
gnal, resp Y- Y. angd compensate for the MZM insertion loss and provide a suffi-

propagation, measurements show higher than 20-dB fad'cnlgnt pump level, the two optical DSB signals obtained at the

B e i rconen M Ut vre ampifie by an EDFA beor g fd
0P 9 e optical coupler at the WST-SSB filter input. Prior to im-

maximum fluctuation attributable to a small remaining upper menting a fiber-wireless transmission, the filter output spec-

[Sslgibggd;?gﬁ Ifgﬁhneoigf(gizdﬁ g?G[IjiesiZEélg(?()a]szg?:tg/.eiy rum was observed at the OSA. Fig. 10 shows the two boosted
' ' ' WDM-SSB channels. A 14-km fiber link was then added be-
tween the transmitter and a remote BS. At this location, a Bragg
IV.- WDM FIBER-RADIO EXPERIMENT grating was used to suppress the WDM channel at 1551.9 nm.
Characterization experiments having confirmed the theordtext, the RF signal recovered from the remaining optical SSB
ical behavior of the device with respect to chromatic dispersigignal was amplified and radio transmitted over a 3-m distance.
effects, a system implementation was necessary for further viainally, after amplification, the received signal was down-con-
idation. With this aim in view, the WDM fiber-radio data transverted and the eye pattern was observed. The clear eye opening
mission shown in Fig. 9 was carried out. The RF equipme(Fig. 9) proves the good quality of the data transmission. Nev-

I
|
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